BASF, Cargill, Novozymes achieve milestone in bio-based acrylic acid project
The team has successfully demonstrated the conversion of 3-hydroxypropionic acid (3-HP), to glacial acrylic acid and superabsorbent polymers
BS B2B Bureau B2B Connect | Ludwigshafen, Germany
)
BASF, Cargill and Novozymes achieved another milestone in bio-based acrylic acid
In August 2012, BASF, Cargill and Novozymes announced their joint agreement to develop a process for the conversion of renewable raw materials into bio-based acrylic acid. In July 2013, the partners successfully demonstrated the production of 3-hydroxypropionic acid (3-HP), one possible precursor to acrylic acid, at pilot scale.
BASF initially plans to use the bio-based acrylic acid to manufacture superabsorbent polymers. Currently, acrylic acid is produced by the oxidation of propylene derived mainly from the refining of crude oil. “After just 18 months we have selected the preferred process to convert 3-HP into glacial acrylic acid. Now we are working full force on the set-up of a small integrated pilot plant until the end of this year,” said Teressa Szelest, Senior Vice President Global Hygiene Business at BASF. Together with the pilot plant for 3-HP, operated by Cargill and supported by Novozymes, this will further support BASF’s plans for fast market entry of superabsorbent polymers derived from bio-based acrylic acid.
Also Read
Superabsorbent polymers and other products derived from bio-based acrylic acid will be an innovative offer to the market and will meet consumer and industry demand for consumer goods based on renewable raw materials and sustainable supply chains. BASF is the world’s largest producer of acrylic acid, a high-volume chemical that feeds into a broad range of products, including superabsorbent polymers that can soak up large amounts of liquid, used primarily for diapers and other hygiene products.
More From This Section
Don't miss the most important news and views of the day. Get them on our Telegram channel
First Published: Sep 17 2014 | 5:17 PM IST

