Scientists have developed a new web-based tool to unlock the complex genetics and biological processes behind grapevine development.
The online database created by researchers at the University of Adelaide can be used to examine how almost 30,000 genes work together in groups and networks to produce the vine and its grapes.
"The complexity of plants is easily overlooked when we are enjoying a glass of wine," said project leader Associate Professor Christopher Ford.
Also Read
"But every part of the vine and the grape, each final attribute of flavour, colour and aroma, their ability to resist pests and adapt to salinity, all of these represent the outcomes of the coordinated expression - switching on or off - of sometimes thousands of individual genes, each encoding some small component of the final product.
"If we know the identity of these genes, and the patterns in which they are turned on and off, we will be better able to understand how their expression leads to these complex outcomes," said Ford.
The work, conducted by PhD student Darren Wong and post-doctoral researchers Crystal Sweetman and Damian Drew, outlines a 'guilt by association' principle where genes turned on at the same time and in the same tissues are likely to be working together.
"For example, if we know there is a gene that is responsible for making an enzyme which is critical at a particular stage of grape production, then this tool will enable us to see which other genes are switched on in the grape at the same time," said Ford.
"By clustering genes based on patterns of this 'co-expression' it's possible to identify not just the genes we expected to be involved but others whose roles in a particular function we didn't suspect.
"In this way we can build up networks of identified genes that we can say are working together under certain conditions, and see which ones may be important, for instance, in helping the plant cope with drought or salinity," Ford said.
Ford said the tool will provide researchers and breeders with a comprehensive tool to help them make important decisions in their prioritising of gene candidates the biological processes related to all aspects of vine and grape development, metabolism and stress responses.
"Ultimately, it will benefit the industry by helping produce new traits in grapevines for improved flavour and quality and climate and environmental adaptation," Ford said.
The study was published in the journal BMC Genomics.


