You are here: Home » PTI Stories » National » News
Business Standard

New porous graphene material stronger, lighter than steel

Press Trust of India  |  Boston 

MIT scientists have designed a new sponge-like material that is lighter and about ten times stronger than steel, by compressing and fusing flakes of graphene.

In its 2D form, graphene is thought to be the strongest of all known materials. However, researchers until now have had a hard time translating that 2D strength into useful 3D materials.

The findings show that the crucial aspect of the new 3D forms has more to do with their unusual geometrical configuration than with the material itself, which suggests that similar strong, lightweight materials could be made from a variety of materials by creating similar geometric features.

Researchers at Massachusetts Institute of Technology in the US analysed the material's behaviour down to the level of individual atoms within the structure.

They were able to produce a mathematical framework that very closely matches experimental observations.

Two-dimensional materials - basically flat sheets that are just one atom in thickness but can be indefinitely large in the other dimensions - have exceptional strength as well as unique electrical properties.

However, due to their extraordinary thinness, "they are not very useful for making 3D materials that could be used in vehicles, buildings or devices," said Markus Buehler, from MIT's Department of Civil and Environmental Engineering (CEE).

The team was able to compress small flakes of graphene using a combination of heat and pressure. This process produced a strong, stable structure whose form resembles that of some corals and microscopic creatures called diatoms.

These shapes, which have an enormous surface area in proportion to their volume, proved to be remarkably strong.

"Once we created these 3D structures, we wanted to see what's the limit - what's the strongest possible material we can produce," said Zhao Qin, a CEE research scientist.

To do that, they created a variety of 3D models and then subjected them to various tests.

In computational simulations, which mimic the loading conditions in the tensile and compression tests performed in a tensile loading machine, "one of our samples has five per cent the density of steel, but 10 times the strength," Qin said.

Buehler said that what happens to their 3D graphene material, which is composed of curved surfaces under deformation, resembles what would happen with sheets of paper.

Paper has little strength along its length and width, and can be easily crumpled up.

However, when made into certain shapes, for example rolled into a tube, suddenly the strength along the length of the tube is much greater and can support substantial weight.

Similarly, the geometric arrangement of the graphene flakes after treatment naturally forms a very strong configuration.

The research appears in the journal Science Advances.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

Dear Reader,


Business Standard has always strived hard to provide up-to-date information and commentary on developments that are of interest to you and have wider political and economic implications for the country and the world. Your encouragement and constant feedback on how to improve our offering have only made our resolve and commitment to these ideals stronger. Even during these difficult times arising out of Covid-19, we continue to remain committed to keeping you informed and updated with credible news, authoritative views and incisive commentary on topical issues of relevance.
We, however, have a request.

As we battle the economic impact of the pandemic, we need your support even more, so that we can continue to offer you more quality content. Our subscription model has seen an encouraging response from many of you, who have subscribed to our online content. More subscription to our online content can only help us achieve the goals of offering you even better and more relevant content. We believe in free, fair and credible journalism. Your support through more subscriptions can help us practise the journalism to which we are committed.

Support quality journalism and subscribe to Business Standard.

Digital Editor

First Published: Sun, January 08 2017. 11:48 IST
RECOMMENDED FOR YOU